

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF TECHNOLOGY ECONOMICS				
QUALIFICATION CODE: 12BECO	LEVEL: 6			
COURSE CODE: MEC212S	COURSE NAME: MATHEMATICAL ECONOMICS			
SESSION: JAN 2019	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

SUPLEMENTARY/ S	ECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	
	MR EDEN TATE SHIPANGA
MODERATOR:	PROF T. SUNDE

INSTRUCTIONS			
	1.	Answer ALL the questions.	
	2.	Write clearly and neatly.	
	3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

- 1. PEN,
- 2. PENCIL
- 3. CALCULATOR

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1 [25 marks]

Given α is non-income tax, β is income tax, δ is marginal propensity to consume, γ is autonomous consumption, Y (national income), I_0 (investment) and G_0 (government expenditure), where $I_0 = 30$, $\gamma = 85$, $\delta = 0.75$, $\beta = 0.2$, and $\alpha = 20$.

- 1. Formulate four possible equations needed to solve the next question (2.). (12)
- 2. Find the reduced form of income determination (Y_e). (8)
- 3. Find the numerical value of Y_e. (5)

Question 2[25 Marks]

- 1. If the total utility function of an individual takes the form of $U = U(x_1, x_2) = (x_1 + 2)^2(x_2 + 3)^3$ where x_1 and x_2 are the quantities of two commodities consumed:
 - a. Find the marginal-utility function of each of the two commodities. (5)
 - b. Find the value of the marginal utility of both when 3 units of each commodity are consumed? (5)
- 2. Find the stationary values for the following and check whether relative extremum or inflection point occurs assuming domain in the interval of $(0, \infty)$

a)
$$y = x^3 - 3x + 5$$
 (5)

b)
$$y = (1/3)x^3 - x^2 + x + 10$$
 (5)

c)
$$y = -x^3 + 4.5x^2 - 6x + 6$$
 (5)

Question 3[25 Marks]

- 1. Given the production function $Q = AK^{\alpha}L^{\beta}$, find the partial derivatives with respect to K and L and give their economic interpretation. (10)
- 2. Given the demand for beef $Q_b = 4850 5P_b + 1.5 P_p + 0.1 Y$, where $Y = 10\ 000 P_b = 100$, and the price for pork $P_p = 100$.
 - a) Find the income elasticity of demand for beef? (5)
 - b) Find the cross price elasticity of demand for beef? (5)
 - c) Estimate the $\Delta\%$ in demand for beef resulting from a 10% increase in the price for pork? (5)

Question 4 [25 Marks]

Exporters in Namibia export Q tons of Namibian manufactured products. The selling price in the international market is given by $P_1 = \alpha - \frac{1}{3}Q$. The producer price in Namibia is given by $P_2 = \beta + \frac{1}{6}Q$. In addition, it costs γ per ton in transport costs.

- 1. Express the exporters profit as a function of Q. (5)
- 2. Find the maximum profit and quantity exported (5)
- 3. Suppose the Government imposes a export tax of *t* per ton exported. Find the new profit maximising quantity AND the profit. (10)
- 4. Find the export tax rate which maximizes tax revenue. (5)

[Total Marks 100]